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ABSTRACT
Existing approaches for sarcasm detection are mainly based on
supervised learning, in which the promising performance largely
depends on a considerable amount of labeled data or extra informa-
tion. In the real world scenario, however, the abundant labeled data
or extra information requires high labor cost, not to mention that
sufficient annotated data is unavailable in many low-resource con-
ditions. To alleviate this dilemma, we investigate sarcasm detection
from an unsupervised perspective, in which we explore a masking
and generation paradigm in the context to extract the context in-
congruities for learning sarcastic expression. Further, to improve
the feature representations of the sentences, we use unsupervised
contrastive learning to improve the sentence representation based
on the standard dropout. Experimental results on six perceived
sarcasm detection benchmark datasets show that our approach
outperforms baselines. Simultaneously, our unsupervised method
obtains comparative performance with supervised methods for the
intended sarcasm dataset.

CCS CONCEPTS
• Information systems → Sentiment analysis; Information
extraction; Clustering and classification; Information retrieval.
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1 INTRODUCTION
Sarcasm is a sophisticated language phenomenon, which would
cause much confusion to exist sentiment classification systems.
So sarcasm detection, a task of predicting whether a given text
contains sarcasm, has received much research attention [1–3, 12,
13, 17, 18, 22, 23]. As shown in Figure 1, we only need to detect
the first sentence as sarcastic. Although both sentences contain a
decisive sentiment word "love", the word "ignored" leads the whole
sentence to an opposite sentiment polarity. That is the incongruity
expressions of sarcasm context.

Recently, many methods have been proposed for sarcasm detec-
tion, which could be broadly classified into two categories. One is
the text-only method which only concentrate on the utterance itself
, such as exploiting incongruity expressions to detect the sarcasm
text [9, 23]. Another direction is based on extra information, which
exploits external knowledge to assist the detection procedure, such
as user history [19, 21], and common sense knowledge [26].

Although these two kinds of methods have achieved satisfying
performance, the procedure of collecting annotated data or other
extra knowledge is tedious work. Meanwhile, a sarcastic utterance
might not be perceived because of the different backgrounds of
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I love being <mask> .   I love being cared.Sarcastic:  I love being ignored.

Similarity: 0.1

Love you more than <mask> .

Love you more than you know.

Normal:     Love you more than this.

Similarity: 0.9

Figure 1: Red denotes the masked places and blue means
decisive sentiment words. During the mask and generation
procedure, sarcastic texts suffer more changes than normal
texts. Hence, for sarcasm sentences, the similarity between
original and reborn texts will be relatively lower.

audiences [24], which will lead to serious annotation errors. To
alleviate these problems, Joshi et al. [11] proposed an unsupervised
method, which compares the word observed in the original sentence
and the one expected after the sentence completion. However, they
only considered a single token to reconstruct sentences rather than
phrases. This is insufficient because most of the sarcastic incon-
gruity is composed of phrases. Consequently, Joshi et al. acquired
higher performance in short text datasets since this method poorly
captures the incongruity of longer sarcastic texts.

Sarcastic expressions tend to possess more sentiment inconsis-
tencies and logical conflicts. If we properly mask some words in
the sentence, the sentiment and logical contradictions will be influ-
enced. We then can obtain a new sentence by feeding the remaining
parts of the sentence into a pre-trained generation model. Since
the pre-trained generation model is pre-trained on general corpora
where sarcastic texts are scarce, we assume that given a masked text,
it can generate a relatively normal one according to the remaining
logic information. As the example shown in Figure 1, the sentence
with the masked word "ignored" is regenerated into a normal text.

Based on these assumptions, we propose an unsupervised sar-
casm detection method. First, we leverage the external sentiment
knowledge and POS information to mask prominent tokens. Then
the masked texts are fed into the pre-trained generation model,
which follows the remaining logic structure to generate texts. There
is a good chance that these reborn texts would not be sarcastic or
make more sense. Second, after obtaining the similarity score be-
tween the generated sentence and the original one, features beneath
the scores will be extracted to decide whether a sentence is sar-
casm. In addition, to overcome the anisotropy problem [7, 15], we
employ unsupervised contrastive learning [8] to obtain a better
sentence representation, which contributes to improving system
performance.

We construct several unsupervised baselines and conduct ex-
periments on seven datasets, including perceived sarcasm datasets
and intended sarcasm dataset. Our method obtains comparative
or better performance than baseline models. Especially for the in-
tended sarcasm dataset, our method surpasses many supervised
approaches.

2 MODEL
2.1 Problem Formulation
The sarcasm detection task can be characterized as a binary classi-
fication task. Given a token sequence 𝑥 = {𝑥1, 𝑥2, ..., 𝑥𝑛} of length

BARTMASK BERTText
m2

diff

A

B

y ∈ {Sarcasm, Non}

Corpus

SimCSE

m1

Sentiment 
Knowledge

POS tagging

① ②

③

Figure 2: Architecture of our proposed method.

𝑛, the sarcasm detection model takes 𝑥 as input and outputs a label
𝑦 ∈ {𝑆𝑎𝑟𝑐𝑎𝑠𝑚, 𝑁𝑜𝑛}.

2.2 Overview
Figure 2 provides an illustration of our method. The proposed frame-
work contains three main components: 1) Sentences mask and gener-
ation. This procedure first recognizesmain components of sentences
which will be properly masked to cause more impact on original
sentences, and then fulfills the texts generation work; 2) Sentences
representation. It is expected to calculate dense vectors of sentences,
and further is finetuned by unsupervised contrastive learning to ob-
tain better representation; 3) Sarcastic utterances detection leverages
the similarity scores between original and regenerated sentences
to detect whether an utterance is sarcastic.

2.3 Sentences Mask and Generation
First, we use the sentiment common knowledge retrieved from
SenticNet [5] to recognize affective words in the sentence 𝑥 , and
split those words into two sets according to its sentiment polarities:

𝑃𝑊 = {𝑝𝑤1, 𝑝𝑤2, ..., 𝑝𝑤ℎ }
𝑁𝑊 = {𝑛𝑤1, 𝑛𝑤2, ..., 𝑛𝑤𝑘 }, ℎ + 𝑘 ≤ 𝑛

Second, we analyze the sentence to get its syntax information1
to identify non-stop words 𝑆𝑊 = {𝑠𝑤1, 𝑠𝑤2, ..., 𝑠𝑤𝑚,𝑚 ≤ 𝑛}. Intu-
itively, these words are the main components of sentences. Then
we split 𝑆𝑊 into two sets which satisfy :

𝑆𝑊1 ∪ 𝑆𝑊2 = 𝑆𝑊 , |𝑆𝑊1 | = |𝑆𝑊2 |

Here, 𝑃𝑊 ∪ 𝑆𝑊1 and 𝑁𝑊 ∪ 𝑆𝑊2 are used to mask original
sentence respectively. So we will obtain two masked sentences
𝑥𝑚1 = {[𝑚]1, 𝑥2, ..., [𝑚]𝑛} and 𝑥𝑚2 = {𝑥1, [𝑚]2, ..., 𝑥𝑛}. These two
masked sentences are fed into the pre-trained generation model to
fulfill the generation procedure.

𝑨{𝑎1, ..., 𝑥2, ..., 𝑥𝑛−1, ..., 𝑎𝑜 } = 𝐵𝐴𝑅𝑇 ( [𝑚]1, 𝑥2, ..., 𝑥𝑛−1, [𝑚]𝑛) (1)

Thus, we will obtain two reborn sentences 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑜 }
and 𝐵 = {𝑏1, 𝑏2, ..., 𝑏𝑝 }. Since the pre-trained language model is
pre-trained on general corpora, it is prone to generate an affective
fluency sentence rather than a sarcastic one. Consequently, this
generation procedure will cause more impact on sarcastic texts
than normal texts which is the basic assumption of our method.

2.4 Sentences Representation
We embed the original sentence𝑥 and its corresponding reborn texts
𝐴 and 𝐵 into 𝑑-dimentional embedding 𝑯 𝑡 ∈ R𝑑 via pre-trained

1We employ SpaCy to finish POS tagging: https://spacy.io/ .
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Table 1: Statistics of training and test datasets.

Dataset Train Test
Sarcasm Non Sarcasm Non

IAC-V1 862 859 97 94
IAC-V2 2, 947 2, 921 313 339
Tweet-1 23, 456 24, 387 2, 569 2, 634
Tweet-2 282 1, 051 35 113
Reddit-1 5, 521 5, 607 1, 389 1, 393
Reddit-2 6, 419 6, 393 1, 596 1, 607
iSarcasm 476 2, 346 124 582

BERT-base [6]:
𝑯𝑥 ,𝑯𝐴,𝑯𝐵 = 𝐵𝐸𝑅𝑇 (𝑥), 𝐵𝐸𝑅𝑇 (𝐴), 𝐵𝐸𝑅𝑇 (𝐵) (2)

Since sentences vectors of pre-trained models are not uniformly
distributed with respect to direction, we can employ SimCSE [8]
on datasets to further improve BERT’s embedding.

2.5 Sarcastic Utterances Detection
We utilize cosine similarity to measure the similarity between rep-
resentations of original sentence 𝐻𝑥 and generation texts 𝐻𝐴/𝐻𝐵 .
Then we use the following equation to calculate a difference score
of each sentence:

diff = sim(𝐻𝑥 , 𝐻𝐴) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 | | sim(𝐻𝑥 , 𝐻𝐵) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (3)

where | | means "or" logical operator. Since the sarcastic utterances
are influenced more than normal texts during the masking and
generation procedure, the difference score of sarcastic texts should
be greater than a non-sarcastic one. If we have a threshold value
which separates sarcastic texts and normal texts, we can yield the
prediction 𝑦 by:

𝑦 = I(diff) (4)

3 EXPERIMENTS
3.1 Experimental Data and Settings

Datasets. We conduct experiments on seven Sarcasm datasets:
six Perceived Sarcasm datasets from Twitter [22, 23], Reddit [12],
and IAC [18]; one Intended Sarcasm dataset (iSarcasm) [20]. For
Twitter dataset, we retrieve tweets using Twitter API with the
provided tweet IDs2. Statistics of the datasets are presented in
Table 1. Note that the proposed unsupervised method uses only the
text in the train set.

Settings. We utilize the pre-trained BART-base [14] as the text
generation module and uncased BERT-base [6] as the sentence
representation module. For the contrastive learning procedure, the
learning rate is 3𝑒 − 5, the mini-batch size is 32 for all datasets, and
𝜏 is 0.05. Our method is dependent on the threshold value. Hence,
we use 20% labeled data in the train set as the development set to
select the optimal threshold, and report results on the test set. We
employ the F1 metric to evaluate the performance of the models.

3.2 Comparison Baselines
We compare our model with four baselines. 1) Lexicon. We use
SenticNet to identify the positive and negative words in the sen-
tence. If a sentence contains positive and negative words at the
same time, we regard the sentence as sarcastic. 2) TF-IDF-LDA
2http://api.twitter.com/

and 3) TF-IDF-Kmeans. Here, TF-IDF coefficients are utilized as
sentence representations. The data is clustered into two clusters
by Latent Dirichlet Allocation [4] and K-Means [16] algorithm re-
spectively. 4) BERT withWords Mask [11]. We re-implement this
unsupervised model and replace its sentence completion module
with BERT. We also replicate supervised results on the iSarcasm
dataset’s reported by Opera et al. [20] to compare with our method.

3.3 Main Experiment Results
Table 3 shows the experiment results on six benchmark datasets. We
can draw the following conclusion: 1) We can observe that our pro-
posed method outperforms all compared baselines on all datasets.
Specifically, the best improved results of Acc. and F1 respectively
are 9.69% and 11.83% compared with baselines. 2) Our proposed
paradigm far exceeds BERT+word-Mask, suggesting that only con-
sidering one word can not fully represent sarcastic meanings. 3)
The employment of SimCSE in our model further improves perfor-
mance, which means unsupervised contrastive learning contributes
to better sentences representation.

Furthermore, as shown in Table 4, our method surpasses un-
supervised baselines and previous supervised sarcasm detection
approaches on the intended dataset. For example, compared with
MIARN which has been reported the best scores, the proposed
method improves 15.65% F1 score. This verifies that our proposed
masking and generation paradigm significantly captures the text
incongruities and effectively improves the performance of sarcasm
detection. Surprisingly, unsupervised methods Lexicon and TF-
IDF-LDA outperform supervised methods. The underlying reason
is that the sarcasm in the iSarcasm dataset is lexically shallow and
semantically deep.

Table 2: Ablation study (F1). S denotes the split of affective
words.M+G denotes theMasking andGeneration procedure.

MODEL IAC1 IAC2 Tweet-1 Tweet-2 Reddit-1 Reddit-2
Our 55.44 63.17 58.76 58.31 54.91 55.80
w/o S 54.32 60.26 56.23 57.75 52.52 54.58
w/o M + G 33.68 54.22 33.36 52.53 43.29 53.09

3.4 Ablation Study
To analyze the impact of different components of our proposed
Masking and Generation method, we conduct an ablation study in
Table 2. 1) w/o S variant mixes the positive and negative words
rather than split them into two different groups. The mixture of
affective words leads to considerably poorer performance. 2) w/o
M + G variant uses just representations from SimCSE-BERT to
finish clustering by LDA and K-Means. We report the best F1 results.
We see that the removal of mask and generation procedure sharply
degrades performance, which indicates that our proposed paradigm
plays a significant role in the understanding of the sarcastic expres-
sion. 3) Table 3 and Table 4 show that contrastive learning indeed
improves representation quality of BERT. The performance would
drop dramatically without SimCSE.

4 DISCUSSION
Impact of Different Prediction Ways on Performance. In

the previous experiment, we use the rule-1 (Eq. 3 and Eq. 4) to
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Table 3: Main experimental results on different datasets. Average scores over five runs are reported. Best scores are in bold.
Second best scores are underlined.

MODEL IAC1 IAC2 Tweet-1 Tweet-2 Reddit-1 Reddit-2
Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%) Acc.(%) F1.(%)

Lexicon 47.64 40.29 44.01 39.12 59.00 55.86 57.43 51.7 43.06 42.71 42.77 41.47
TF-IDF-LDA 53.40 53.22 54.61 52.44 54.52 54.36 50.68 48.15 52.51 50.81 51.72 47.65
TF-IDF-Kmeans 49.73 49.35 51.68 47.52 52.27 44.1 72.97 51.86 49.68 46.74 52.58 43.29
BERT+word-Mask [11] 51.39 36.35 48.00 35.72 59.46 56.54 41.22 41.21 47.19 39.47 46.91 37.63
Ours 52.35 53.75 62.06 56.75 50.21 52.35 67.57 55.24 52.62 52.60 51.92 49.89
Ours+SimCSE 57.59 55.44 64.30 64.27 58.91 58.76 56.76 58.31 53.30 54.91 56.16 56.14

Table 4: Experiment results on iSarcasm Dataset. Best Scores
are in bold. Second best scores are underlined.

MODEL Precision.(%) Recall.(%) F1.(%)
Lexicon 49.2 48.7 40.5
TF-IDF-LDA 15.7 49.0 42.6
TF-IDF-Kmeans 18.8 32.5 32.4
BERT+word-Mask [11] 16.7 88.5 24.0
LSTM 21.7 74.7 33.6
CNN 26.1 56.3 35.6
SIARN [25] 21.9 78.2 34.2
MIARN [25] 23.6 79.3 36.4
3CNN [10] 25.0 33.3 28.6
Dense-LSTM [27] 37.5 27.6 31.8
Ours 50.7 50.5 50.1
Ours+SimCSE 20.5 72.7 52.1

Figure 3: The performance of different prediction rules and
mask rates. The average lengths of texts are 270 and 80 for
IAC-2 and Tweet-1 respectively.

finish sarcasm detection. Here, we explore the effect of another two
prediction rules:

rule-2 : 𝑦 = I( | sim(𝐻𝑥 , 𝐻𝐴) − sim(𝐻𝑥 , 𝐻𝐵 ) |< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
rule-3 : 𝑦 = I(sim(𝐻𝐴, 𝐻𝐵 ) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) (5)

The experiment results are reported in Figure 3. The curves of
Tweet-1 gather together which means it is almost not influenced
by different rules. For longer texts such as IAC-2, rule-1 obtaines
the best performance.

Impact of different Masking Rates on Performance. In the
previous experiment, we mask all affective words and other non-
stop tokens to yield two incomplete sentences. Here, we change the
mask rate and report performance. From Figure 3, we can find that
a higher mask rate can improve performance. Besides, the datasets

Table 5: Different numbers of labeled data (development set)
and corresponding thresholds. Average scores over 100 runs
are reported. T- and R- represent Tweet and Reddit respec-
tively.

number 10 50 200 10% best-F1
T-threshold 0.9920 0.9839 0.9759 0.9759 0.9820
R-threshold 0.9076 0.9437 0.9317 0.9317 0.9260
Tweet-1 52.91 55.85 56.67 57.08 58.76
Reddit-2 50.35 53.76 55.02 55.03 56.14

(e.g., IAC-2) which have more long texts tend to be less affected by
changes of mask rates.

Figure 4: Thresholds and corresponding F1 scores on two
datasets.

Impact of Different Thresholds on Performance. To explore
the impact of threshold values, we vary thresholds and report results
in Figure 4. The curves are sharp which means that small perturba-
tion to the best threshold will degrade performance. In addition, as
shown in Table 5, we argue that a few labeled texts could effectively
approach the best threshold and obtain a promising performance.

Case Study. We present the predictions of models on three
random examples in Figure 5. We can conclude that our model is
capable to handle more complex semantic and affective information
and longer texts. 1) Sentence 1 is a simple example that clearly con-
tains positive and negative sentiment words. The word "stupid" and
"awesome" form a sentiment contradict which can be easily detected
by Lexicon and other methods. 2) Sentence 2 only appears positive
sentiment words. Therefore, it is difficult to detect sarcasm just by
affective information. However, after word mask and prediction via
BERT, we can obtain a dissimilar comparison between the original
word "love" and the retrieved word "keep". 3) Sentence 3 is a more
complex example, since its sentiment and logical contradictions are
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Lexicon BERT+word
-mask Ours

1. yes cause a stupid looking Duck on a hat
is pretty awesome.                        Sarcastic

√ √ √

2. I just love getting calls from restricted
numbers.  Sarcastic
->
I just keep getting calls from restricted 
numbers.    

Retrieved word by BERT+word-mask

× √ √

3. So the Romans nailed anyone up that
organized the community! Did you get that
from the film?                               Sarcastic
->
So the Romans nailed anyone who did that
to the community! Did you get that from
the film?                 Generated text by Ours
->
So the Romans didn't set anyone up that
organized the event. Did you know that
from the book?       Generated text by Ours

× × √

Figure 5: Three examples for case study. Red denotes negative
word. Blue denotes positive word. Purple represents masked
tokens. Green represents corresponding generated tokens.

deduced from phrases rather than words. BERT+word-mask is
not qualified for processing this case. However, through masking
and generation procedure, the pre-trained language model infers
common sense knowledge from the remaining logical structure of
the text and generates other sentences. Hence, we can decide that
Sentence 3 is sarcastic by comparison between several generated
sentences.

5 CONCLUSION
In this paper, we propose an unsupervised sarcasm detectionmethod,
which reveals the context incongruities in the sarcastic texts via
the masking and generation paradigm. Specifically, we first iden-
tify the common sentiment knowledge and POS information, in
which some words will be appropriately masked. Then, we feed the
masked sentences into the pre-trained models to repair sentences.
Finally, we perform the sarcasm detection task based on the simi-
larity between original and reborn texts. Experimental results show
that our approach outperforms baselines on six perceived sarcasm
datasets, and obtains comparative performance with supervised
methods on the intended sarcasm dataset.
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